

586070-EPP-1-2017-1-SE-EPPKA2-CBHE-JP Geodesy and geoinformatics for sustainable development in Jordan (GEO4D)

Introduction to Web Mapping Web Services

Maria Antonia Brovelli Politecnico di Milano

Geospatial Web

Geospatial Web Services

Web Service

"...a software system designed to support interoperable machine to machine interaction over a network"

Geospatial Web Service

"...allows geospatial data and functions to be interoperable"

Interoperability

Interoperability is the capability to communicate, execute programs or transfer data among various functional units in a manner that requires the user to have little or no knowledge of the unique characteristics of those units (ISO/IEC 2382-01, Information Technology Vocabulary, Fundamental Terms)

Examples of interoperabile components needed by a distributed GIS:

- Catalogues (collections of metadata, that is information on available objects and operators)
- Data archives
- Viewers and editing tools
- Operators (e.g. for transformation, filtering, integration,...)

Web mapping

Map mashing-up

Standardization

In order to obtain the interoperability standards are needed

De facto standard: technical instruction used by a noteworthy number of people and/or organizations (i.e. shp, dxf, ...)

De jure standard: technical instruction set by national and/or international standardization organizations (W3C, ISO, OGC, National standards, ...)

OGC Web Services (OWS)

- OGC Web Services expose geographical functionality to Web users through a standard Web protocol
- XML based: the use of the "eXtensible Markup Language" allows to encoding data, rules and functions in a format that is both human-readable and machine-readable:

Web Services are platform and OS-independent

- The functioning of OWS can be described in four steps:
 - the client contacts the server and queries it about its functionalities
 - the server sends back to the client an XML document containing the functionalities of the supported service
 - the client asks the server for data
 - the server provides the data as requested

OWS Services

DATA DELIVERY

CATALOGUE

PROCESSING

OWS - Data Delivery Services (1)

OWS - Data Delivery Services (2)

- WMS: service that generates maps and makes them available as images → RASTER
- WFS: service that generates geographic entities or features. If the service is "transaction" (WFS-T), data manipulation is allowed → VECTOR
- WCS: service that generates geospatial coverages, that are geospatial information representing spacevarying phenomena (fields) → GRID
- SOS: service that generates metadata and observations from heterogeneous sensor systems → DATA (XML)

Web Map Service (WMS)

- The WMS service is composed by three basic functions, supported by three interfaces:
 - GetCapabilities: provides human and computer understandable description of the available data and the parameters related to the requests accepted by the service
 - GetMap: supplies the requested data
 - **GetFeatureInfo**: provides other information (map content and attributes of map features)

The first two operations are mandatory, the third is optional (queryable WMS)

The access to a WMS can be carried out using a standard browser, with the parameters set in the URL (GET method) or in a hidden way (POST method)

WMS Example

Styling of WMS: SLD standard

The Styled Layer Descriptor (SLD) defines an encoding that extends the WMS standard to allow user-defined symbolization and coloring of geographic and coverage data

Web Feature Service (WFS)

- While in a WMS a query returns merely a graphic result, in the case of WFS the result involves geographic entities or features
- A feature is an object with a certain number of properties. Each property is characterized by the fields "name", "type" and "value". If at least one property is geometric, then we're dealing with a geometric feature. The geometry is described by simple geometric elements such as points, curves, surfaces and solids
- The main problem is that geographic data are generally modeled in heterogeneous ways; therefore when transferring them, the scheme used for the model must be transferred too
- The data exchange mechanism provided by the OGC is GML (Geographic Markup Language), KML and GeoJSON

Basic WFS functions

The WFS service is composed by the following basic functions supported by interfaces:

- GetCapabilities: provides the readable description of the available features and the parameters related to the requests accepted by the service
- **DescribeFeatureType**: provides the description of the features (data scheme)
- **GetFeature**: supplies the "Feature"-type objects (instances). It must also know which properties have to be provided and it must be able to make spatial and non-spatial selections.
- data manipulation, for example operations such as "create", "update" e "delete" (Transaction)
- the application of a lock-request to one or more instances during a transaction (LockFeature)

WFS Classification

The WFS service are described as:

- Basic: they support the 'GetCapabilities', 'DescribeFeatureType' and 'GetFeature' operations. These are the 'read-only' mode WFS
- Transactional: they supports transaction requests.
 A transaction request facilities the creation, deletion, and updating of geographic features
- Complete: Includes the LockFeature support to the suite of transactional level operations

Web Coverage Service (WCS)

- Service that supports electronic retrieval of geospatial coverages, that are geospatial information representing space-varying phenomena
- Unlike the WMS which portrays spatial data to return static maps (rendered as pictures by the server), the WCS provides available data together with their detailed descriptions; defines a rich syntax for requests against these data; and returns data with its original semantics (instead of pictures) which may be interpreted, extrapolated, etc. – and not just portrayed
- Unlike WFS, which returns discrete geospatial features, the WCS returns coverages representing space-varying phenomena that relate a spatio-temporal domain to a (possibly multidimensional) range of properties

Basic WCS functions

The WCS service is composed by three basic functions, supported by three interfaces:

- GetCapabilities: returns an XML document describing the service and brief descriptions of the coverages that clients may request
- DescribeCoverage: lets clients request a full description (in XML format) of one or more coverages served by a particular WCS server
- GetCoverage: returns a coverage (that is, values or properties of a set of geographic locations), encoded in well-known coverage format

SWE – Sensor Web Enablement

The OGC's Sensor Web Enablement (SWE) standards enable developers to make all types of sensors, transducers and sensor data repositories discoverable, accessible and usable via the Web

SWE Example – SOS (1)

The Sensor Observation Service (SOS) provides a standardized interface for managing and retrieving metadata and observations from heterogeneous sensor systems

This standard:

- specifies how observations, sensor descriptions, as well as computational representations of observed features are accessed in an interoperable and standardized way
- defines means to register new sensors and to remove existing ones
- defines operations to insert new observations as well as to efficiently insert and retrieve observation result values
- specifies SOS functionality in a binding independent way

SOS - Core Operations

The SOS service is composed by the following basic functions:

- GetCapabilities: provides access to metadata and detailed information about the operations available by an SOS server
- DescribeSensor: provides access to detailed information about the sensors and sensor systems available by an SOS server
- GetObservation: provides access to observations from sensors and sensor systems selected by spatial, temporal and thematic filtering

SOS - Transactional Extension

The SOS transactional extension is composed by the following basic functions:

- InsertSensor: allows registration of new sensors at the SOS
- DeleteSensor: allows the deletion of registered sensors and all their associated observations
- InsertObservation: allows the insertion of observations in an SOS server

OWS Catalog Service

CSW – Model Architecture

OWS Processing Service

WPS functions

WPS defines three operations:

- GetCapabilities: returns service-level metadata
 - Service description
 - Access description
 - Brief process descriptions
- DescribeProcess returns a description of a "process" including its inputs and outputs
- Execute returns the output of a "process"

Other OCG Standards

Data formats:

- SFS: Simple Feature Standard
- GML: Geography Markup Language
 - **CityGML**: storage of virtual 3D city models
- KML: Keyhole Markup Language
- NetCDF: OGC Network Common Data Form

•

Services and specification:

- WMTS: Web Map Tile Service
- CTS: Coordinate Transformation Service
- WCPS: Web Coverage Processing Service
- GeoAPI Implementation
- Filter Encoding
- •

FOSS Software for an SDI

Server Side

Client Side

Web Map and Geodata Clients (1)

- They are interactive viewers in the most of cases simply running in a web browser (Mozilla Firefox, Chrome, Opera, Safari, Internet Explorer, etc.)
- New generation web map and geodata clients are completely independent from the server application that lies behind them: they communicate indifferently by means of OGC open protocols with every OGC compliant server
- The clients allow to:
 - contact different services on different machines
 - render maps
 - navigate maps, zoom in, zoom out, pan
 - query information
 - turn layers on and off or add more maps
 - edit map features (if data are served by a WFS-T Service)
 - build own maps and save them to be used at any time or to be shared.

The first webGIS developed by us (2002)

http://webgis2.como.polimi.it/agew/

http://viaregina3.como.polimi.it/ViaRegina/index-en.html

WHICH POINTS OF INTEREST DO YOU WANT YOUR ROUTE TO PASS BY?

WebGIS and Services

http://muvias.eoapps.eu/cityfocus/application.html

Virtual Globes – Some examples (NASA Java WorldWind)

Virtual Globes – Some examples (NASA Web WorldWind)

http://viaregina3.como.polimi.it/WorldWind/

