GEO4D Digital mapping using LiDAR data

Flor Álvarez Taboada Eduardo González-Ferreiro

University of León

Geomatics Engineering Research Group (GEOINCA), Technical School of Agricultural and Forestry Engineering, University of León, Avenida de Astorga, sn, 24401, Ponferrada (León), Spain flor.alvarez@unileon.es
egonf@unileon.es

10th- 21st September 2018 Ponferrada, León

P4 Model validation

STEPS

SUMMARY OF PRACTICAL #4 (I)

GROUND POINTS (BareEarth.las)

0% **OMISSION ERROR**:
ALL THE GROUND SAMPLES ARE IN
THE BareEarth.las FILE

0% **COMMISSION ERROR**: NONE OF THE OBJECT SAMPLES

ARE IN THE BareEarth.las FILE

FILES WITH THE SAMPLES (points):

GROUND SAMPLES: C:\...\GEO4D\Data\CP\Method\Method_gp.txt
OBJECT SAMPLES: C:\...\GEO4D\Data\CP\Method\Method_ngp.txt

FILE TO VALIDATE (checking area) (created by using *polyclipdata.exe* in order to reduce the processing time):

BARE EARTH: C:\...\GEO4D\Results\06 CheckingArea\BE subset.txt

COMPARISON

LET'S COMPARE

BE_subset.txt

Type I Error (OMISSION ERROR)

Type II ERROR (COMMISSION ERROR)

$$Type\ I = \frac{a}{a+b}$$

$$Type\ II = \frac{c}{c+d}$$

a – # ground points well classified (filtered) as ground points (they are in the BE_subset.txt)

b – # ground points filtered out as objects (they are not in BE_subset.txt)

c – # object points misclassified as ground (they are in the BE_subset.txt)

d - # object points well classified (they are not in the BE_subset.txt)

IMPORTANT:

1. The three *.txt files that we are going to use have to: use the TAB as separator, use the point (.) to separate the decimals, NOT have a header for the fields. Tip: use Notepad++ to check it.

STEPS TO FOLLOW:

- 1. Open C:\...\GEO4D\Tools
- 2. Double click in "method_validation_V5.R"
- 3. Set the working directory: "C:/.../GEO4D/"
- 4. Select all the lines in the script and run them

5. The script "method_validation_V5.R" has called the ERROR function. You can check the function in C:\...\GEO4D\Tools\

6. You will get the results of the validation on the console and in a file (Resultados.txt): GEO4D\Results\06_Validation\01_Method\results.txt

FROM THE MODEL **POINT OF VIEW**

HOW GOOD (ACCURATE) IS OUR DEM?

OPTION 1: VISUAL INSPECTION

OPTION 2: EXTERNAL SAMPLE

X,Y,Z data measured with TOTAL STATION, GPS

Precision of the sample: at least 3 times > LiDAR data precision

NEVER use LiDAR data to validate

FROM THE MODEL POINT OF VIEW

HOW GOOD (ACCURATE) IS OUR DEM?

ROBUST ESTIMATORS (the errors do not have to follow a normal distribution)

Accuracy measure	Error type	Notational expression
Median (50% quantile) Normalized median	Δh Δh	$\hat{Q}_{\Delta h}(0.5) = m_{\Delta h}$ NMAD = 1.4826 · median _i ($ \Delta h_i - m_{\Delta h} $)
absolute deviation		····Δu)
68.3% quantile	$ \Delta h $	$\hat{Q}_{ \Delta\hbar }(0.683)$
95% quantile	$ \Delta h $	$\hat{Q}_{ \Delta h }(0.95)$

Höle, J. & Höle, M. (2009). Accuracy assessment of digital elevation models by means of robust statistical methods. *ISPRS Journal of Photogrammetry and Remote Sensing*, 64, pp. 394-406.

OTHER INTERNATIONAL STANDARDS (not robust):

	,	
Root mean square error		$\widehat{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \Delta h_i^2}$
Mean error		$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \Delta h_i$
Standard deviation		$\hat{\sigma} = \sqrt{\frac{1}{(n-1)} \sum_{i=1}^{n} (\Delta h_i - \hat{\mu})^2}$

 $Precision_z = 1.96 \cdot RMSE_z$

HOW DOES LAND COVER AFFECT THE QUALITY OF THE DEM?

How does ${\color{blue}{\mathbf{SLOPE}}}$ affect the quality of the dem?

HOW DOES THE **INTERPOLATION ALGORITHM** AFFECT THE QUALITY OF THE DEM?

HOW DOES THE FILTERING METHOD AFFECT THE QUALITY OF THE DEM?

HOW DOES THE **OUTLIER REMOVAL** AFFECT THE QUALITY OF THE DEM?

FROM THE MODEL POINT OF VIEW

SAMPLES

FILES WITH THE SAMPLES (points):

D:\...\GEO4D\Data\CP\Model

ONE FILE WITH ALL THE SAMPLES: CP_MODEL.txt
3 FILES WITH THE POINTS CLASSIFIED BY SLOPE

FILES TO VALIDATE (DEM) (*.TIF)

MDE from GroundFilter: C:\...\GEO4D\Results\06_CheckingArea\DEM_GS.tif MDE from TinSurface: C:\...\GEO4D\Results\06_CheckingArea\DEM_TS.tif MDE from IDW (GIS): C:\...\GEO4D\Results\06_CheckingArea\DEM_IDW.tif

R SCRIPT TO USE: C:\...\GEO4D\Tools\model_validation_V5

STEPS TO FOLLOW:

- 1. Open C:\...\GEO4D\Tools
- 2. Double click in "method_validation_V5.R"
- 3. Set the working directory: "C:/.../GEO4D/"
- 4. Select all the lines in the script and run them

5. The script "method_validation_V5.R" has called the ERROR function. You can check the function in C:\...\GEO4D\Tools\

- 6. You will get the results of the validation on the console and in the following directory:
 - $GEO4D \backslash Results \backslash 06_Validation \backslash 02_Model \backslash *.txt$

HOW DOES THE INTERPOLATION ALGORITHM AFFECT THE QUALITY OF THE DEM?

	GridSurfaceCreate	TIN	IDW
Precision			
Q95%			

AND THE SLOPE?

	GridSurfaceCreate			TIN			IDW		
	Н	M	L	Н	M	L	Н	M	L
Precision				??	??	??	??	??	??
Q95%				??	??	??	??	??	??

TO KNOW MORE...

Barreiro-Fernández, L., Sandra Buján, David Miranda, Ulises Diéguez-Aranda , Eduardo González-Ferreiro (2016). Accuracy assessment of LiDAR-derived digital elevation models in a rural landscape with complex terrain. *J. Appl. Remote Sens.* 10(1), 016014 (Feb 18, 2016). doi:10.1117/1.JRS.10.016014